Image Denoising Using AutoEncoders in Keras and Python
Type Course
Created unavailable
Identifier unavailable
Description
In this 1-hour long project-based course, you will be able to: - Understand the theory and intuition behind Autoencoders - Import Key libraries, dataset and visualize images - Perform image normalization, pre-processing, and add random noise to images - Build an Autoencoder using Keras with Tensorflow 2.0 as a backend - Compile and fit Autoencoder model to training data - Assess the performance of trained Autoencoder using various KPIs Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Relations
Currently, no topics are attached.
Currently, no authors are attached.
Currently, no resources are attached.
Edit resource New resource
0.0 /10
useless alright awesome
from 0 reviews
- Resource level 0.0 /10
- beginner intermediate advanced
- Resource clarity 0.0 /10
- hardly clear sometimes unclear perfectly clear
- Reviewer's background 0.0 /10
- none basics intermediate advanced expert